x
No Plagiarism!b3yujnpe41o4FKQYyr3Kposted on PENANA 恐懼感8964 copyright protection364PENANAm3TBphPdFj 維尼
368Please respect copyright.PENANAZd7Tk8J997
8964 copyright protection364PENANA5aKHeH0DeX 維尼
∫sin(√x+a)e√x√xdx8964 copyright protection364PENANA9EQPy8jCLJ 維尼
Substitute u=√x ⟶ dudx=12√x (steps) ⟶ dx=2√xdu:8964 copyright protection364PENANAZ5eo2KQp97 維尼
=2∫eusin(u+a)du… or choose an alternative:368Please respect copyright.PENANAfkoVekYpjX
Substitute e√x8964 copyright protection364PENANAgCCFFZyw4o 維尼
Now solving:8964 copyright protection364PENANAL0De4qE0aP 維尼
∫eusin(u+a)du8964 copyright protection364PENANAfCNgIGrclT 維尼
We will integrate by parts twice in a row: ∫fg′=fg−∫f′g.8964 copyright protection364PENANA2ZBIgCR6lb 維尼
First time:8964 copyright protection364PENANAtNLyl9BFDT 維尼
f=sin(u+a),g′=eu8964 copyright protection364PENANA6fVJOpCcOe 維尼
↓ steps↓ steps8964 copyright protection364PENANArc0spxC1Bv 維尼
f′=cos(u+a),g=eu:8964 copyright protection364PENANAwgWdQ1hwFk 維尼
=eusin(u+a)−∫eucos(u+a)du8964 copyright protection364PENANATB1YSSAY8D 維尼
Second time:8964 copyright protection364PENANAidcBgEvNpe 維尼
f=cos(u+a),g′=eu8964 copyright protection364PENANApVVBucwHdB 維尼
↓ steps↓ steps8964 copyright protection364PENANA2tSy3EbrMU 維尼
f′=−sin(u+a),g=eu:8964 copyright protection364PENANAv0sSN1SW9c 維尼
=eusin(u+a)−(eucos(u+a)−∫−eusin(u+a)du)8964 copyright protection364PENANAtyFV0ZkEbf 維尼
Apply linearity:8964 copyright protection364PENANAhqTsycsfrG 維尼
=eusin(u+a)−(eucos(u+a)+∫eusin(u+a)du)8964 copyright protection364PENANACbfTFls3zr 維尼
The integral ∫eusin(u+a)du appears again on the right side of the equation, we can solve for it:8964 copyright protection364PENANAhfvCnYpehb 維尼
=eusin(u+a)−eucos(u+a)28964 copyright protection364PENANAZShBoyc0kG 維尼
Plug in solved integrals:8964 copyright protection364PENANAruHWKzjAoA 維尼
2∫eusin(u+a)du=eusin(u+a)−eucos(u+a)8964 copyright protection364PENANAiwWwiVG9i4 維尼
Undo substitution u=√x:8964 copyright protection364PENANALv94m0dgsh 維尼
=sin(√x+a)e√x−cos(√x+a)e√x8964 copyright protection364PENANA8a1JIZecaE 維尼
The problem is solved:8964 copyright protection364PENANAoHcQsC3b9G 維尼
∫sin(√x+a)e√x√xdx=sin(√x+a)e√x−cos(√x+a)e√x+C8964 copyright protection364PENANAUcdurEo0su 維尼
Rewrite/simplify:8964 copyright protection364PENANAvl4ZTT6pAu 維尼
=(sin(√x+a)−cos(√x+a))e√x+C8964 copyright protection364PENANACM7TEbnpXQ 維尼
15.158.61.12
ns 15.158.61.12da2