x
No Plagiarism!z24eWVpd1I2k24JpvdF8posted on PENANA 恐懼感8964 copyright protection437PENANAETWwCNcy4h 維尼
441Please respect copyright.PENANAR5UAuQVd3h
8964 copyright protection437PENANA8MWJ2mcvQa 維尼
∫sin(√x+a)e√x√xdx8964 copyright protection437PENANAsxf2aXa9Af 維尼
Substitute u=√x ⟶ dudx=12√x (steps) ⟶ dx=2√xdu:8964 copyright protection437PENANAFyOkJngyxT 維尼
=2∫eusin(u+a)du… or choose an alternative:441Please respect copyright.PENANAQYqGR68Kmy
Substitute e√x8964 copyright protection437PENANAEHkhUSxTIX 維尼
Now solving:8964 copyright protection437PENANA9EIsB6tQcq 維尼
∫eusin(u+a)du8964 copyright protection437PENANAKQ6QMzx8BK 維尼
We will integrate by parts twice in a row: ∫fg′=fg−∫f′g.8964 copyright protection437PENANAPOTChm3gZx 維尼
First time:8964 copyright protection437PENANAqwubha1tFx 維尼
f=sin(u+a),g′=eu8964 copyright protection437PENANA2Yg5Myuf4s 維尼
↓ steps↓ steps8964 copyright protection437PENANAwlyiq0l44R 維尼
f′=cos(u+a),g=eu:8964 copyright protection437PENANAvkOZ73pdJS 維尼
=eusin(u+a)−∫eucos(u+a)du8964 copyright protection437PENANAZRSoLwFSfX 維尼
Second time:8964 copyright protection437PENANAx4xCDl22dF 維尼
f=cos(u+a),g′=eu8964 copyright protection437PENANAgWUuTl7CCy 維尼
↓ steps↓ steps8964 copyright protection437PENANANog45WRoEH 維尼
f′=−sin(u+a),g=eu:8964 copyright protection437PENANAg27MEIPI7Q 維尼
=eusin(u+a)−(eucos(u+a)−∫−eusin(u+a)du)8964 copyright protection437PENANAc5BuoCKwrr 維尼
Apply linearity:8964 copyright protection437PENANAINdcUYNmmK 維尼
=eusin(u+a)−(eucos(u+a)+∫eusin(u+a)du)8964 copyright protection437PENANAcT2KxLhAdw 維尼
The integral ∫eusin(u+a)du appears again on the right side of the equation, we can solve for it:8964 copyright protection437PENANAxo4o31geyP 維尼
=eusin(u+a)−eucos(u+a)28964 copyright protection437PENANADuJTLAAKP8 維尼
Plug in solved integrals:8964 copyright protection437PENANAyG3DFCj5nk 維尼
2∫eusin(u+a)du=eusin(u+a)−eucos(u+a)8964 copyright protection437PENANA6ZcNkxzyy1 維尼
Undo substitution u=√x:8964 copyright protection437PENANAkKn3B1O9Wf 維尼
=sin(√x+a)e√x−cos(√x+a)e√x8964 copyright protection437PENANAiFL1g0ft8j 維尼
The problem is solved:8964 copyright protection437PENANA28BezXLmfS 維尼
∫sin(√x+a)e√x√xdx=sin(√x+a)e√x−cos(√x+a)e√x+C8964 copyright protection437PENANAlP6SHHjxOJ 維尼
Rewrite/simplify:8964 copyright protection437PENANAJfs5MA7ZOL 維尼
=(sin(√x+a)−cos(√x+a))e√x+C8964 copyright protection437PENANATKWahg3eOA 維尼
3.131.38.100
ns3.131.38.100da2